Disentangled Graph Contrastive Learning for Reviewbased Recommendation

Yuyang Ren Shanghai Jiao Tong University renyuyang@sjtu.edu.cn

Luoyi Fu Shanghai Jiao Tong University yiluofu@sjtu.edu.cn Haonan Zhang Shanghai Jiao Tong University zhanghaonan@sjtu.edu.cn

Jiaxin Ding Shanghai Jiao Tong University jiaxinding@sjtu.edu.cn

ng@sjtu.edu.cn

Chenghu Zhou
Institute of Geographical Sciences
and Natural Resources Research,
Chinese Academy of Sciences
zhouch@lreis.ac.cn

Xinbing Wang Shanghai Jiao Tong University xwang8@sjtu.edu.cn

> IJCAI 2023 Code: None

Qi Li

Shanghai Jiao Tong University

liqilcn@sjtu.edu.cn

Xinde Cao

Shanghai Jiao Tong University

xdcaosjtu@outlook.com

Details:

• However, these methods usually model user-item interactions in a holistic manner and neglect the entanglement of the latent factors behind them, e.g., price, quality, or appearance, resulting in suboptimal representations and reducing interpretability.

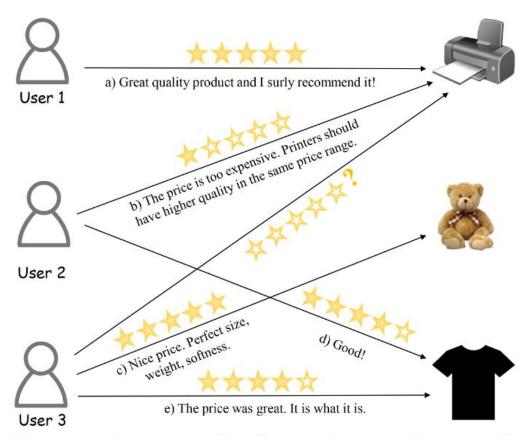
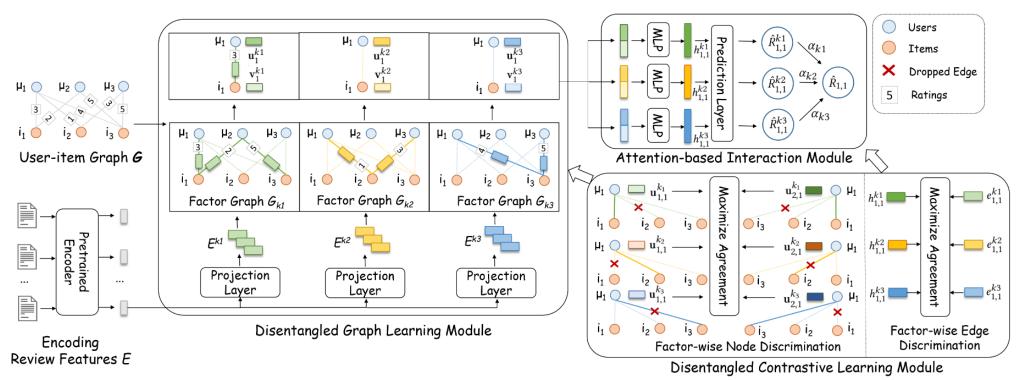
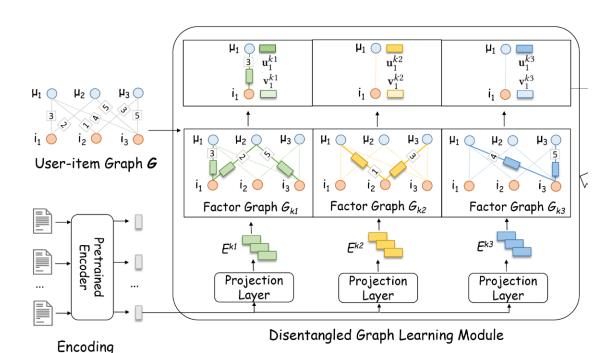


Figure 1: An example of user-item rating graph.




Figure 2: Overview of DGCLR. For clarity, we show the pipeline to generate the rating prediction for one user-item interaction.

$$R \in \mathbb{R}^{M \times N} \qquad \qquad \mathbf{u}_{i}^{(0)} = (\mathbf{u}_{i}^{1,(0)}, \mathbf{u}_{i}^{2,(0)}, \dots, \mathbf{u}_{i}^{K,(0)}) \qquad (1) \qquad \mathbf{u}_{i}^{k,(0)} \in \mathbb{R}^{\frac{d}{K}}$$

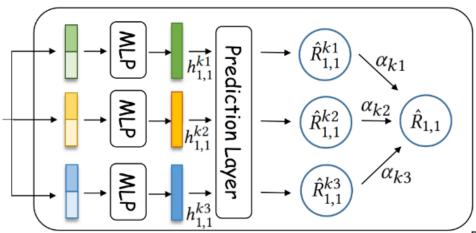
$$E \in \mathbb{R}^{M \times N \times d} \qquad \qquad \mathbf{v}_{j}^{(0)} = (\mathbf{v}_{j}^{1,(0)}, \mathbf{v}_{j}^{2,(0)}, \dots, \mathbf{v}_{j}^{K,(0)})$$

$$\mathcal{E} = (R, E) \qquad \qquad \mathbf{e}_{i,j}^{k} = \sigma \left(\mathbf{W}_{k}^{\top} \mathbf{e}_{i,j} + \mathbf{b}_{k}\right) \qquad (2)$$

Review Features E

$$\operatorname{se}_{i,j}^{k} = \frac{\exp(\phi\left(\operatorname{e}_{i,j}^{k}, \operatorname{c}_{k}\right)/\tau)}{\sum_{k'=1}^{K} \exp(\phi\left(\operatorname{e}_{i,j}^{k'}, \operatorname{c}_{k'}\right)/\tau)}$$
(3)

$$\operatorname{st}_{i,j}^{k,(l)} = \frac{\exp(\phi\left(\mathbf{u}_{i}^{k,(l-1)}, \mathbf{v}_{j}^{k,(l-1)}\right)/\tau)}{\sum_{k'=1}^{K} \exp(\phi\left(\mathbf{u}_{i}^{k',(l-1)}, \mathbf{v}_{j}^{k',(l-1)}\right)/\tau)} \tag{4}$$


$$s_{i,j}^{k,(l)} = \eta s e_{i,j}^k + (1 - \eta) s t_{i,j}^{k,(l)}$$
 (5)

$$\mathbf{x}_{r;j\to i}^{k,(l)} = \frac{\mathbf{s}_{i,j}^{k,(l)} \left(\mathbf{e}_{ij}^k \cdot \mathbf{W}_r^{k,(l)} + \mathbf{v}_j^{k,(l-1)}\right)}{\sqrt{\left|\mathcal{D}_j^{k,(l)}\right| \left|\mathcal{D}_i^{k,(l)}\right|}},\tag{6}$$

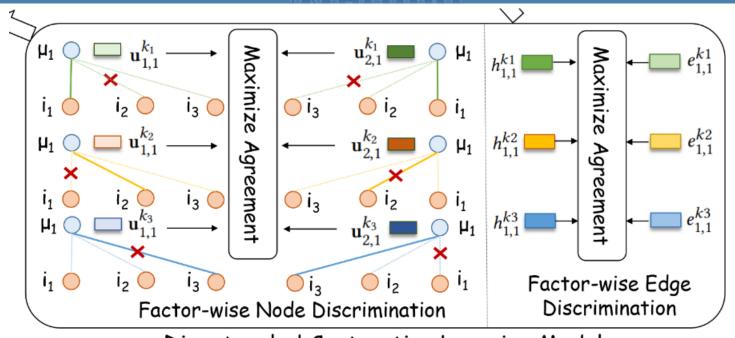
$$\mathcal{D}_i^{k,(l)} = \sum_{p \in \mathcal{N}(i)} \mathbf{s}_{i,p}^{k,(l)} \qquad \mathcal{D}_j^{k,(l)} = \sum_{p \in \mathcal{N}(j)} \mathbf{s}_{p,j}^{k,(l)}$$

$$\mathbf{u}_i^{k,(l)} = \mathbf{W}^{(l)} \sum_{r \in \mathcal{R}} \sum_{p \in \mathcal{N}_{i,r}} \mathbf{x}_{r;p \rightarrow i}^{k,(l)}, \quad \mathbf{v}_j^{k,(l)} = \mathbf{W}^{(l)} \sum_{r \in \mathcal{R}} \sum_{p \in \mathcal{N}_{j,r}} \mathbf{x}_{r;p \rightarrow j}^{k,(l)}$$

$$\mathbf{u}_{i}^{k} = \frac{1}{L} \sum_{l=1}^{L} \mathbf{u}_{i}^{k,(l)}; \quad \mathbf{v}_{j}^{k} = \frac{1}{L} \sum_{l=1}^{L} \mathbf{v}_{j}^{k,(l)}$$
 (7)

Attention-based Interaction Module $\[\[\]$

$$\mathbf{h}_{ij}^{k} = \mathbf{MLP}\left(\left[\mathbf{u}_{i}^{k}, \mathbf{v}_{j}^{k}\right]\right),\tag{8}$$


$$\hat{r}_{i,j}^{k} = \mathbf{w}^{\top} \mathbf{h}_{i,j}^{k}$$

$$a_{k} = \sigma \left(\mathbf{w}_{r}^{\top} \mathbf{h}_{i,j}^{k} + b_{r} \right)$$

$$\alpha_{k} = \frac{\exp \left(a_{k} / \tau \right)}{\sum_{k'=1}^{K} \exp \left(a_{k'} / \tau \right)}$$

$$(10)$$

$$\hat{r}_{i,j} = \sum_{k=1}^{K} \alpha_k \hat{r}_{i,j}^k$$

Disentangled Contrastive Learning Module

$$\mathcal{L}_{fnd}^{user} = -\mathbb{E}_{\mathcal{K}\times\mathcal{U}}\left[\log D\left(\mathbf{u}_{1,i}^{k}, \mathbf{u}_{2,i}^{k}\right)\right] + \mathbb{E}_{\mathcal{K}\times\mathcal{U}\times\mathcal{U}'}\left[\log D\left(\mathbf{u}_{1,i}^{k}, \mathbf{u}_{2,i'}^{k}\right)\right]$$

$$D\left(\mathbf{a}, \mathbf{b}\right) = \sigma\left(\mathbf{a}^{\mathsf{T}}\mathbf{W}\mathbf{b}\right) \qquad \mathcal{L}_{fnd} = \mathcal{L}_{fnd}^{user} + \mathcal{L}_{fnd}^{item}$$

$$\mathcal{L}_{fed} = -\mathbb{E}_{\mathcal{K}\times\mathcal{E}}\left[\log D\left(\mathbf{h}_{i,j}^{k}, \mathbf{e}_{i,j}^{k}\right)\right] + \mathbb{E}_{\mathcal{K}\times\mathcal{E}\times\mathcal{E}'}\left[\log D\left(\mathbf{h}_{i,j}^{k}, \mathbf{e}_{i',j'}^{k}\right)\right]$$

$$\sup = \frac{1}{|\mathcal{T}|} \sum \left(\hat{r}_{ij} - r_{ij}\right)^{2}, \qquad (13) \qquad \mathcal{L} = \mathcal{L}_{\sup} + \lambda_{1}\mathcal{L}_{fnd} + \lambda_{2}\mathcal{L}_{fed}$$

Table 1: Statistics of datasets.

Datasets	Toys	Clothing	Office	Kitchen	Tools
#Users	19,412	4,905	39, 387	66, 519	16,638
#Items	11,924	2,420	23,033	28,237	10,217
#Reviews	167,597	53,228	278,677	551,682	134,476
Density	0.072%	0.448%	0.031%	0.029%	0.079%

Table 2: Comparison results on the six datasets in terms of MSE. The best and second-best results are highlighted with boldface and underlined. All the results are reported as the mean value across 5 random runs.

Datasets	SVD	NCF	DeepCoNN	TransNet	DRRNN	NARRE	DAML	DGCF	RMG	RG	RGCL	DGCLR	Improv.
Toys	0.8082	0.8075	0.8026	0.7982	0.7884	0.7961	0.7940	0.7943	0.7901	0.7853	0.7771	0.7717	0.7%
Clothing	1.1161	1.1094	1.1184	1.1141	1.1035	1.1064	1.1065	1.1002	1.1064	1.1024	1.0858	1.0573	2.6%
Office	0.7438	0.7459	0.7426	0.7419	0.7306	0.7408	0.7358	0.7345	0.7348	0.7293	0.7228	0.7146	1.1%
Kitchen	1.1011	1.0946	1.0914	1.0879	1.0769	1.0835	1.0814	1.0798	1.0783	1.0754	1.0732	1.0658	0.7%
Tools	0.9412	0.9385	0.9356	0.9348	0.9249	0.9304	0.9295	0.9301	0.9288	0.9253	0.9241	0.9145	1.0%

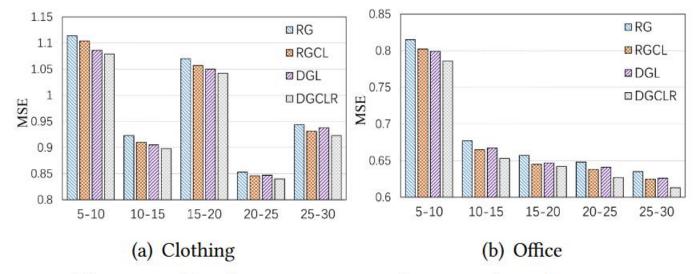


Figure 3: Performance w.r.t interaction degrees.

Table 3: Ablation studies on the DGL and AI modules.

Datasets	Toys	Clothing	Office
RG	0.7853	1.1024	0.7293
Variant 1	0.7857	1.0987	0.7287
Variant 2	0.7801	1.0793	0.7231
Variant 3	0.7841	1.0871	0.7266
DGL	0.7793	1.0728	0.7222
DGL+AI	0.7776	1.0691	0.7210

Experiments

Table 4: Ablation studies on the DCL module.

Datasets	Toys	Clothing	Office
DGL+AI+ND	0.7762	1.0634	0.7188
DGL+AI+FND	0.7743	1.0586	0.7165
DGL+AI+ED	0.7755	1.0641	0.7184
DGL+AI+FED	0.7732	1.0588	0.7173
DGCLR	0.7717	1.0573	0.7146

Table 5: Impact of latent factor number on DGCLR.

Datasets	Toys	Clothing	Office
K = 1	0.7797	1.0817	0.7231
K = 2	0.7723	1.0575	0.7164
K = 4	0.7717	1.0595	0.7146
K = 8	0.7772	1.0639	0.7217

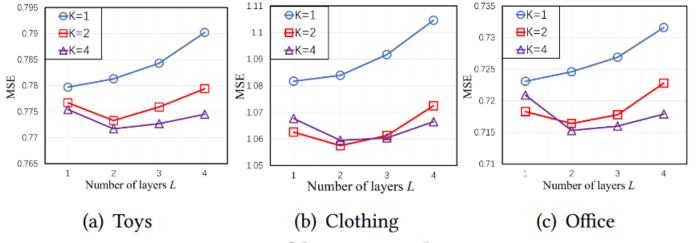


Figure 4: Impact of layer number L on DGCLR.

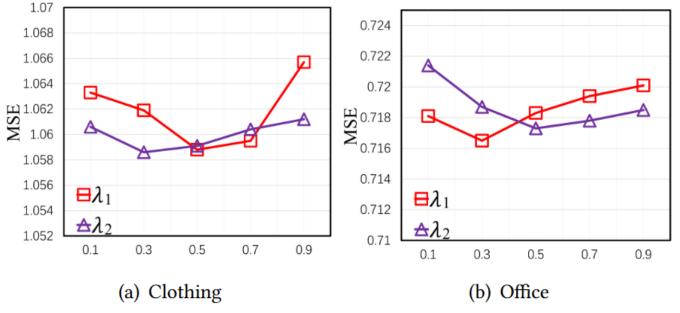


Figure 5: Impact of λ_1 and λ_2 on DGCLR.

Table 6: Examples of reviews corresponding to each latent factor on Office. The key information is highlighted with red.

		1. T					
	r = 1	$s_{i,j}^{\kappa_1,L} = 0.547$	Although i love the pastel colors, this item is wasteful. Unfortunately, I 'll never use the note tabs.				
Factor k_1	actor k_1 $r = 3$ $s_{i,j}^{k_1,L} = 0.538$ $r = 5$ $s_{i,j}^{k_1,L} = 0.615$		his product is okay, but i had a difficult time getting it to stay open. i don't think it would be very beneficial in my business.				
			the range is good and the clarity can not be beat in my opinion. the options are just what i needed for my purposes.				
	$r = 1$ $s_{i,j}^{k_2,L} = 0.551$		I had previously given this a five star review, but after two months the stapler jammed shut and would not open.				
Factor k_2	or k_2	ka.L a ran	Print quality seems to be OK, but there 's no way to tell the printer whether you are using plain paper of glossy paper. Plain				
r =	r = 3	$s_{i,j}^{k_2,L} = 0.587$	paper prints look washed out, premium paper prints look good.				
	r = 5	$s_{i,j}^{k_2,L} = 0.513$	It's solidly made and stands up to regular use pretty darn well. The result is crisp laser printing on a home office budget.				
	r = 1	$s_{i,j}^{k_3,L} = 0.637$	My rating reflects my dissatisfaction with this vendors deceptive advertising.				
Factor k_3	$r = 3$ $s_{i,j}^{k_3,L} = 0.526$ $r = 5$ $s_{i,j}^{k_3,L} = 0.581$		This product almost delivers on its promises one. But the individual packets of labels easily detached from the main package.				
			Making photo prints uses a lot of ink. This helps address that problem. Same quality prints as standard capacity cartridge.				
	r = 1	$= 1 \qquad s_{i,j}^{k_4,L} = 0.579$	The ink is very inexpensive but with the quality of the system so cheaply made the inexpensive ink is hardly worth the cost				
1 1			of having to buy a new system in less than two years.				
Factor k_4	$r = 3 \qquad s_{i,j}^{k_4,j}$		For a relatively inexpensive laminator, this does an OK job. But the lack of guides on this unit is a real problem.				
	$r = 5$ $s_{i,j}^{k_4,L} = 0.547$		I bought this because of the price and to my surprise it is fantastic. I will buy this again over any other more expensive ones.				

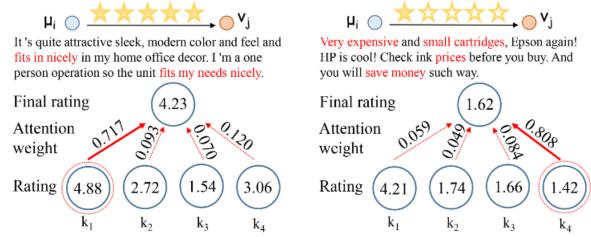


Figure 6: Examples of rating predictions in DGCLR.

Thanks